Evolved Populations of Shigella flexneri Phage Sf6 Acquire Large Deletions, Altered Genomic Architecture, and Faster Life Cycles
نویسندگان
چکیده
Genomic architecture is the framework within which genes and regulatory elements evolve and where specific constructs may constrain or potentiate particular adaptations. One such construct is evident in phages that use a headful packaging strategy that results in progeny phage heads packaged with DNA until full rather than encapsidating a simple unit-length genome. Here, we investigate the evolution of the headful packaging phage Sf6 in response to barriers that impede efficient phage adsorption to the host cell. Ten replicate populations evolved faster Sf6 life cycles by parallel mutations found in a phage lysis gene and/or by large, 1.2- to 4.0-kb deletions that remove a mobile genetic IS911 element present in the ancestral phage genome. The fastest life cycles were found in phages that acquired both mutations. No mutations were found in genes encoding phage structural proteins, which were a priori expected from the experimental design that imposed a challenge for phage adsorption by using a Shigella flexneri host lacking receptors preferred by Sf6. We used DNA sequencing, molecular approaches, and physiological experiments on 82 clonal isolates taken from all 10 populations to reveal the genetic basis of the faster Sf6 life cycle. The majority of our isolates acquired deletions in the phage genome. Our results suggest that deletions are adaptive and can influence the duration of the phage life cycle while acting in conjunction with other lysis time-determining point mutations.
منابع مشابه
Phage conversion of Shigella flexneri group antigens.
A temperate phage, designated Sf6, has been isolated from Shigella flexneri 3a. Characterization of Sf6 revealed that it possesses the capacity for converting the S. flexneri 3,4 group antigen complex to group factor 6. Serological studies and chemical analysis of lipopolysaccharide from converted strains suggest that group factor 6 is a reflection of an acetylation of the preexisting 3,4 antig...
متن کاملThe host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion.
Assembly of dsDNA bacteriophage is a precisely programmed process. Potential roles of host cell components in phage assembly haven't been well understood. It was previously reported that two unidentified proteins were present in bacteriophage Sf6 virion (Casjens et al, 2004, J.Mol.Biol. 339, 379-394, Fig. 2A). Using tandem mass spectrometry, we have identified the two proteins as outer membrane...
متن کاملOmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella.
Despite being essential for successful infection, the molecular cues involved in host recognition and genome transfer of viruses are not completely understood. Bacterial outer membrane proteins A and C co-purify in lipid vesicles with bacteriophage Sf6, implicating both outer membrane proteins as potential host receptors. We determined that outer membrane proteins A and C mediate Sf6 infection ...
متن کاملKey residues of S. flexneri OmpA mediate infection by bacteriophage Sf6.
Many viruses, including bacteriophage, have the inherent ability to utilize several types of proteinaceous receptors as an attachment mechanism to infect cells, yet the molecular mechanisms that drive receptor binding have not been elucidated. Using bacteriophage Sf6 and its host, Shigella flexneri, we investigated how Sf6 utilizes outer membrane protein A (OmpA) for infection. Specifically, we...
متن کاملCharacterization of two polyvalent phages infecting Enterobacteriaceae
Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses reveal...
متن کامل